The survival function of the Bcr-Abl oncogene is mediated by Bad-dependent and -independent pathways: roles for phosphatidylinositol 3-kinase and Raf. Academic Article uri icon

Overview

abstract

  • The Bcr-Abl tyrosine kinase constitutively activates cytokine signal transduction pathways that stimulate growth and prevent apoptosis in hematopoietic cells. The antiapoptotic action of interleukin-3 (IL-3) has been linked to a signaling pathway which inactivates the proapoptotic protein Bad by phosphorylation through kinases such as Akt and Raf. Here we report also that expression of Bcr-Abl leads to phosphorylation of Bad in hematopoietic cells. Bad phosphorylation induced by Bcr-Abl is kinase dependent, requires phosphatidylinositol 3-kinase (PI3-kinase), and mitochondrial targeting of Raf, and occurs independently of Erk. The ability of Bcr-Abl to confer cytokine-independent survival to hematopoietic cells was compromised by inhibitors of PI3-kinase, as well as by a dominant negative form of Raf targeted to the mitochondria. Furthermore, when the capacity of Bcr-Abl to phosphorylate Bad was completely blocked by dominant negative Raf, a subpopulation of cells remained viable, providing evidence for Bad-independent survival pathways. This alternative survival pathway remained PI3-kinase dependent. Finally, Bcr-Abl, but not IL-3, inhibited the proapoptotic activity of overexpressed Bad. We conclude that the antiapoptotic function of Bcr-Abl is mediated through pathways involving PI3-kinase and Raf and that survival can occur in the absence of Bad phosphorylation.

publication date

  • February 1, 2000

Research

keywords

  • Carrier Proteins
  • Genes, abl
  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-raf

Identity

PubMed Central ID

  • PMC85238

Scopus Document Identifier

  • 0033959620

PubMed ID

  • 10648603

Additional Document Info

volume

  • 20

issue

  • 4