mu-opioid receptors are present in vagal afferents and their dendritic targets in the medial nucleus tractus solitarius. Academic Article uri icon

Overview

abstract

  • Ligands of the mu-opiate receptor (MOR) are known to influence many functions that involve vagal afferent input to the nucleus tractus solitarius (NTS), including cardiopulmonary responses, gastrointestinal activity, and cortical arousal. The current study sought to determine whether a cellular substrate exists for direct modulation of vagal afferents and/or their neuronal targets in the NTS by ligands of the MOR. Anterograde tracing of vagal afferents arising from the nodose ganglion was achieved with biotinylated dextran amine (BDA), and the MOR was detected by using antipeptide MOR antiserum. The medial subdivision of the intermediate NTS was examined by electron microscopy for the presence of peroxidase-labeled, BDA-containing vagal afferents and immunogold MOR labeling. MOR was present in both presynaptic axon terminals and at postsynaptic sites, primarily dendrites. In dendrites, MOR immunogold particles usually were located along extrasynaptic portions of the plasma membrane. Of 173 observed BDA-labeled vagal afferent axon terminals, 33% contained immunogold labeling for MOR within the axon terminal. Many of these BDA-labeled terminals formed asymmetric, excitatory-type synapses with dendrites, some of which contained MOR immunogold labeling. MORs were present in 19% of the dendrites contacted by BDA-labeled terminals but were present rarely in both the vagal afferent and its dendritic target. Together, these results suggest that MOR ligands modulate either the presynaptic release from or the postsynaptic responses to largely separate populations of vagal afferents in the intermediate NTS. These results provide a cellular substrate for direct actions of MOR ligands on primary visceral afferents and their second-order neuronal targets in NTS.

publication date

  • June 26, 2000

Research

keywords

  • Afferent Pathways
  • Dendrites
  • Receptors, Opioid, mu
  • Solitary Nucleus
  • Vagus Nerve

Identity

Scopus Document Identifier

  • 0034717937

PubMed ID

  • 10842226

Additional Document Info

volume

  • 422

issue

  • 2