Potassium depletion increases proton pump (H(+)-ATPase) activity in intercalated cells of cortical collecting duct. Academic Article uri icon

Overview

abstract

  • Intercalated cells (ICs) from kidney collecting ducts contain proton-transporting ATPases (H(+)-ATPases) whose plasma membrane expression is regulated under a variety of conditions. It has been shown that net proton secretion occurs in the distal nephron from chronically K(+)-depleted rats and that upregulation of tubular H(+)- ATPase is involved in this process. However, regulation of this protein at the level of individual cells has not so far been examined. In the present study, H(+)-ATPase activity was determined in individually identified ICs from control and chronically K(+)-depleted rats (9-14 days on a low-K(+) diet) by monitoring K(+)- and Na(+)-independent H(+) extrusion rates after an acute acid load. Split-open rat cortical collecting tubules were loaded with the intracellular pH (pH(i)) indicator 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, and pH(i) was determined by using ratiometric fluorescence imaging. The rate of pH(i) recovery in ICs in response to an acute acid load, a measure of plasma membrane H(+)-ATPase activity, was increased after K(+) depletion to almost three times that of controls. Furthermore, the lag time before the start of pH(i) recovery after the cells were maximally acidified fell from 93.5 +/- 13.7 s in controls to 24.5 +/- 2.1 s in K(+)-depleted rats. In all ICs tested, Na(+)- and K(+)-independent pH(i) recovery was abolished in the presence of bafilomycin (100 nM), an inhibitor of the H(+)-ATPase. Analysis of the cell-to-cell variability in the rate of pH(i) recovery reveals a change in the distribution of membrane-bound proton pumps in the IC population of cortical collecting duct from K(+)-depleted rats. Immunocytochemical analysis of collecting ducts from control and K(+)-depleted rats showed that K(+)-depletion increased the number of ICs with tight apical H(+)ATPase staining and decreased the number of cells with diffuse or basolateral H(+)-ATPase staining. Taken together, these data indicate that chronic K(+) depletion induces a marked increase in plasma membrane H(+)ATPase activity in individual ICs.

publication date

  • July 1, 2000

Research

keywords

  • Kidney Tubules, Collecting
  • Macrolides
  • Potassium, Dietary
  • Proton Pumps

Identity

Scopus Document Identifier

  • 0033867338

PubMed ID

  • 10894802

Additional Document Info

volume

  • 279

issue

  • 1