Identification of a stability determinant on the edge of the Tet repressor four-helix bundle dimerization motif. Academic Article uri icon

Overview

abstract

  • Isofunctional tetracycline repressor (TetR) proteins isolated from different bacteria show a sequence identity between 38 and 88% of the residues. Their active state is a homodimer formed by a four-alpha-helix bundle as the main interaction motif. We utilize this sequence variation of isofunctional proteins to determine residues contributing to the stability of the four-helix bundle. The thermodynamic stabilities of two TetR proteins with 63% sequence identity were determined by urea-induced reversible denaturation followed by fluorescence and circular dichroism. Both methods yield identical results. The deltaG(o)U (H2O) values are 60 and 75 kJ x mol(-1). We have constructed TetR hybrid proteins derived from these wild types to identify the determinant leading to the 15 kJ x mol(-1) stability difference. Successive size reduction of the exchanged portion yielded two single residues affecting the overall protein stability. The P184Q exchange leads to a more stable protein, whereas the G181D exchange located at the solvent's exposed edge of the four-helix bundle is solely responsible for the reduced stability. Additional mutants based on crystal structures of TetR do not reveal any hint for steric interference of the Asp181 side chain with neighboring residues. Thus, this is an example for the role played by surface-exposed turn residues for the stability of four-helix bundles. We assume that the larger conformational flexibility of Gly and the reduction of the negative surface charge could favor formation of the turn on the edge of the four-helix bundle.

publication date

  • March 20, 2001

Research

keywords

  • Bacterial Proteins
  • Repressor Proteins

Identity

Scopus Document Identifier

  • 0035916947

PubMed ID

  • 11258944

Additional Document Info

volume

  • 40

issue

  • 11