Magnetic resonance imaging for the evaluation of hydronephrosis, reflux and renal scarring in children.
Academic Article
Overview
abstract
PURPOSE: We studied the effectiveness of magnetic resonance imaging (MRI) for evaluating hydronephrosis, differential renal function, vesicoureteral reflux and renal scarring in children. MATERIALS AND METHODS: A total of 16 patients with hydronephrosis were evaluated with MRI. Coronal T1 and axial T1 and T2-weighted images were obtained before and after the administration of intravenous contrast material. Patients with vesicoureteral reflux underwent magnetic resonance voiding cystourethrography. Differential renal function was estimated from differential parenchymal volumes determined from MRI using computer software. The results were compared to standard imaging modalities. RESULTS: A total of 19 MRI studies were performed in 16 patients, including 3 for ureteropelvic junction obstruction, 11 for vesicoureteral reflux and 2 for other conditions. MRI provided the best anatomic detail and clear corticomedullary differentiation. MRI identified renal scarring and cortical thinning in 8 cases, while mercaptoacetyltriglycine 3 scans did not show any renal scarring and single photon emission computerized tomography-dimercapto-succinic acid nuclear scans diagnosed only 4 of 5 cases. There was good correlation between differential function obtained from nuclear scans and differential parenchymal volumes obtained from MRI (correlation coefficient 0.86, r2 = 0.74). Magnetic resonance voiding cystourethrography diagnosed reflux in 4 of 5 patients in whom vesicoureteral reflux was previously documented by standard voiding cystourethrography. CONCLUSIONS: MRI provides an alternative for the evaluation of hydronephrosis in children by combining the information provided by functional and anatomic nuclear scans, voiding cystourethrography and ultrasonography in a single study without ionizing radiation. MRI appears to be as good as existing modalities in the evaluation of renal scarring and cortical thinning.