Synergistic activation of the androgen receptor by bombesin and low-dose androgen. Academic Article uri icon

Overview

abstract

  • PURPOSE: Neuropeptide growth factors such as bombesinare implicated in progression to androgen-independent prostate cancer (PC). We examined the impact of bombesin on androgen receptor (AR)-mediated gene expression. EXPERIMENTAL DESIGN: The AR together with the AR-responsive probasin ARR(3)tk-luc or PSA-pPUE-ELB-luc promoter was cotransfected into Swiss 3T3 and PC-3 cells, both of which express high-affinity bombesin receptors; the cells were incubated with bombesin (0-50 nM) and dihydrotestosterone (DHT; 0-10 nM), and luciferase activities were measured. DHT increased transcription approximately 40-fold at doses of 1 and 10 nM but had no effect at 10 pM. Bombesin alone, or with 1 or 10 nM DHT, did not further increase transcription. However, 5 nM bombesin and 10 pM DHT, doses that by themselves had no effect, resulted in a approximately 20 fold increase in transcription (P < 0.005). This synergistic effect was blocked by bombesin receptor antagonists and recombinant neutral endopeptidase, which hydrolyzes bombesin. Bombesin and DHT together also increased binding of nuclear extracts from PC-3 cells transfected with AR to a consensus androgen response element in mobility shift assays and increased the level of secreted prostate-specific antigen in LNCaP cell supernatant compared with DHT or bombesin alone. Immunoprecipitation of AR from (32)P-labeled LNCaP cells revealed that 5 nM bombesin + 10 pM DHT induced AR phosphorylation comparable with 1 nM DHT, whereas bombesin or 10 pM DHT alone did not. CONCLUSIONS: These data indicate that bombesin can synergize with low (castrate) levels of DHT to induce AR-mediated transcription and suggest that neuropeptides promote AR-mediated signaling in androgen-independent prostate cancer.

publication date

  • July 1, 2002

Research

keywords

  • Bombesin
  • Dihydrotestosterone
  • Prostatic Neoplasms
  • Receptors, Androgen

Identity

Scopus Document Identifier

  • 0035992425

PubMed ID

  • 12114445

Additional Document Info

volume

  • 8

issue

  • 7