Estimation of parameters and unobserved components for nonlinear systems from noisy time series.
Academic Article
Overview
abstract
We study the problem of simultaneous estimation of parameters and unobserved states from noisy data of nonlinear time-continuous systems, including the case of additive stochastic forcing. We propose a solution by adapting the recently developed statistical method of unscented Kalman filtering to this problem. Due to its recursive and derivative-free structure, this method minimizes the cost function in a computationally efficient and robust way. It is found that parameters as well as unobserved components can be estimated with high accuracy, including confidence bands, from heavily noise-corrupted data.