Free fatty acids reduce splanchnic and peripheral glucose uptake in patients with type 2 diabetes. Academic Article uri icon

Overview

abstract

  • Splanchnic glucose uptake (SGU) plays a major role in the disposal of an oral glucose load (OGL). To investigate the effect of an elevated plasma free fatty acid (FFA) concentration on SGU in patients with type 2 diabetes, we measured SGU in eight diabetic patients (mean age 51 +/- 4 years, BMI 29.3 +/- 1.4 kg/m(2), fasting plasma glucose 9.3 +/- 0.7 mmol/l) during an intravenous Intralipid/heparin infusion and 7-10 days later during a saline infusion. SGU was estimated by the OGL insulin clamp method: subjects received a 7-h euglycemic-hyperinsulinemic clamp (insulin infusion rate = 100 mU x m(-2) x min(-1)), and a 75-g OGL was ingested 3 h after starting the insulin clamp. After glucose ingestion, the steady-state glucose infusion rate during the insulin clamp was decreased appropriately to maintain euglycemia. SGU was calculated by subtracting the integrated decrease in glucose infusion rate during the 4-h period after glucose ingestion from the ingested glucose load (75 g). 3-[(3)H]glucose was infused during the 3-h insulin clamp before glucose ingestion to determine the rates of endogenous glucose production and glucose disappearance (R(d)). Intralipid/heparin or saline infusion was initiated 2 h before the start of the OGL clamp. Plasma FFA concentrations were significantly higher during the OGL clamp with the intralipid/heparin infusion than with the saline infusion (2.5 +/- 0.3 vs. 0.11 +/- 0.02 mmol/l, P < 0.001). During the 3-h insulin clamp period before glucose ingestion, Intralipid/heparin infusion reduced R(d) (4.4 +/- 0.3 vs. 5.3 +/- 0.3 mg x kg(-1) x min(-1), P < 0.01). During the 4-h period after glucose ingestion, SGU was significantly decreased during the intralipid/heparin versus saline infusion (30 +/- 2 vs. 37 +/- 2%, P < 0.01). In conclusion, an elevation in plasma FFA concentration impairs both peripheral and SGU in patients with type 2 diabetes.

publication date

  • October 1, 2002

Research

keywords

  • Blood Glucose
  • Diabetes Mellitus, Type 2
  • Fatty Acids, Nonesterified
  • Splanchnic Circulation

Identity

Scopus Document Identifier

  • 0036789244

PubMed ID

  • 12351445

Additional Document Info

volume

  • 51

issue

  • 10