Reduced susceptibility to collagen-induced arthritis in DBA/1J mice expressing the TSG-6 transgene. Academic Article uri icon

Overview

abstract

  • OBJECTIVE: Expression of TSG-6 (tumor necrosis factor-stimulated gene 6) is induced by proinflammatory cytokines. This study was undertaken to examine the effects of local expression of TSG-6 in arthritic joints of TSG-6 transgenic mice, in the collagen-induced arthritis (CIA) model. METHODS: We generated transgenic mice that harbored the TSG-6 gene under the control of the T cell-specific lck promoter. Arthritis was induced by immunization with bovine type II collagen (CII), and its progression was monitored based on the incidence of arthritis, the arthritis index, and footpad swelling. Anti-CII antibodies and cytokine production were determined by enzyme-linked immunosorbent assay. Gene expression arrays were used to compare gene expression profiles of transgenic and control mice at various stages of CIA. RESULTS: TSG-6 was expressed in limbs of transgenic mice after immunization with CII, while its expression in nontransgenic animals was insignificant. The incidence of CIA was reduced in TSG-6 transgenic animals, its onset delayed, and all parameters of clinical arthritis significantly reduced. However, the immune response against CII was not significantly inhibited in TSG-6 transgenic mice. CONCLUSION: TSG-6 expression has been demonstrated in patients with rheumatoid and other forms of arthritis. Our data show that local expression of TSG-6 at sites of inflammation results in potent inhibition of inflammation and joint destruction in a model of autoimmune arthritis in mice. Therefore, it is likely that TSG-6 plays a similar modulatory role in human rheumatoid arthritis and related diseases and may have potential for the treatment of autoimmune arthritis in humans.

publication date

  • September 1, 2002

Research

keywords

  • Arthritis
  • Cell Adhesion Molecules
  • Collagen Type II
  • Genetic Predisposition to Disease

Identity

Scopus Document Identifier

  • 0036745082

PubMed ID

  • 12355494

Additional Document Info

volume

  • 46

issue

  • 9