Ultrastructural localization of serotonin 2A and N-methyl-D-aspartate receptors in somata and dendrites of single neurons within rat dorsal motor nucleus of the vagus. Academic Article uri icon

Overview

abstract

  • Both glutamate and serotonin are potent modulators of autonomic functions involving the nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus (DMNV) at the level of the area postrema. Moreover, many of the dendrites in this NTS region express both N-methyl-D-aspartate (NMDA) and serotonin (5HT) 2A receptors, and some of these dendrites may arise from the adjacent DMNV. Thus, single neurons in DMNV may also express both receptors. To test this hypothesis, we used electron microscopic immunocytochemistry for dual localization of the essential R1 subunit of the NMDA receptor (NR1) and the 5HT2A receptor in rat intermediate DMNV, a region serving mainly gastrointestinal functions. Gold particles representing NR1 and peroxidase reaction product for 5HT2A receptors were seen in the cytoplasm, as well as on distinct segments of the plasma membrane of many dendrites. Of the NR1-labeled dendrites, 31% (254/814) also contained 5HT2A immunoreactivity; among the 5HT2A-labeled dendrites, 52% (254/485) expressed NR1. The 5HT2A labeling was also present in numerous small unmyelinated axons, axon terminals, and glial processes. These profiles were largely without NR1 immunoreactivity, although NR1 was detected in some of the dendrites postsynaptic to 5HT2A-labeled terminals. Our results suggest that calcium entry through NMDA channels and 5HT2A receptor activation may dramatically affect postsynaptic excitability of single neurons in the DMNV. In addition, the findings also indicate that the 5HT2A receptor is strategically positioned for involvement in modulation of the presynaptic release of neurotransmitters affecting the postsynaptic activity of DMNV neurons responsive to NMDA activation.

publication date

  • January 6, 2003

Research

keywords

  • Neurons
  • Receptors, N-Methyl-D-Aspartate
  • Receptors, Serotonin

Identity

Scopus Document Identifier

  • 0037420971

PubMed ID

  • 12454991

Additional Document Info

volume

  • 455

issue

  • 2