Increase in drug-induced seizure susceptibility of transgenic mice overexpressing GABA transporter-1. Academic Article uri icon

Overview

abstract

  • AIM: The changes of seizure susceptibility of transgenic mice overexpressing GABA transporter-1 (GAT-1) were studied to clarify the possible role of GABAergic transmission in epileptogenesis. METHODS: Seizures were induced by intraperitoneal administration of pentylenetetrazol (PTZ), picrotoxin (PIC), or kainic acid (KA) respectively. The anticonvulsant effect of ethyl nipecotate was tested by its intraperitoneal injection 15 min before the administration of the epileptogenic agents. RESULTS: The percentages of occurrence of clonic seizures induced by PTZ 45 mg/kg, PIC 2.5 mg/kg, or KA 20 mg/kg in GAT-1 transgenic mice were 88.9 %, 100 %, and 83.3 % respectively, whereas those in control C57BL/6J mice were 42.9 %, 57.1 %, and 33.3 %. The percentages of occurrence of tonic seizures induced by PTZ 45 mg/kg, PIC 2.5 mg/kg, or KA 20 mg/kg in transgenic mice were 88.9 %, 100 %, and 83.3 % respectively, and whereas those in control mice were 28.6 %, 42.9 %, and 16.7 %. The latencies of both clonic and tonic seizures onset in transgenic mice were markedly shortened compared with those in control animals. The results indicated that GAT-1 transgenic mice showed increased susceptibility to seizures induced by the anti-GABAergic convulsive drugs (PTZ, PIC), as well as glutamic receptor agonist (KA). Ethyl nipecotate, inhibitor of GAT-1, inhibited PTZ-induced seizures in both GAT-1 transgenic and C57BL/6J mice. The incidence of seizures was decreased after the application of ethyl nipecotate, and the latencies to the onset of clonic or tonic seizures were also prolonged. CONCLUSION: The increase in seizure susceptibility of transgenic mice over-expressing GAT-1 is an evidence for involvement of GABAergic transmission in epileptogenesis, and this transgenic mouse might be a useful animal model for study on the role of GABAergic transmission in epileptogenesis.

publication date

  • October 1, 2003

Research

keywords

  • Animals, Genetically Modified
  • Anticonvulsants
  • Carrier Proteins
  • Membrane Proteins
  • Membrane Transport Proteins
  • Nipecotic Acids
  • Seizures

Identity

Scopus Document Identifier

  • 0141960896

PubMed ID

  • 14531940

Additional Document Info

volume

  • 24

issue

  • 10