Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists.
Review
Overview
abstract
Peroxisome proliferator-activated receptors (PPAR) are members of a superfamily of nuclear hormone receptors. Activation of PPAR isoforms elicits both antineoplastic and anti-inflammatory effects in several types of mammalian cells. PPARs are ligand-activated transcription factors and have a subfamily of three different isoforms: PPAR alpha, PPAR gamma, and PPAR beta/delta. All isoforms heterodimerise with the 9-cis-retinoic acid receptor RXR, and play an important part in the regulation of several metabolic pathways, including lipid biosynthesis and glucose metabolism. Endogenous ligands of PPAR gamma include long-chain polyunsaturated fatty acids, eicosanoid derivates, and oxidised lipids. Newly developed synthetic ligands include thiazolidinediones-a group of potent PPAR gamma agonists and antidiabetic agents. Here, we review PPAR gamma-induced antineoplastic signalling pathways, and summarise the antineoplastic effects of PPAR gamma agonists in different cancer cell lines, animal models, and clinical trials.