Decreased plasma membrane targeting of NMDA-NR1 receptor subunit in dendrites of medial nucleus tractus solitarius neurons in rats self-administering morphine. Academic Article uri icon

Overview

abstract

  • Opioid abuse is associated with repeated administration and escalation of dose that can result in profound adaptations in homeostatic processes. Potential cellular mechanisms and neural sites mediating opiate-dependent adaptations may involve NMDA-dependent synaptic plasticity within brain areas participating in behaviors related to consumption of natural reinforcers, as well as affective-autonomic integration, notably the medial nucleus tractus solitarius (mNTS). NMDA-dependent synaptic plasticity may be mediated by changes in the intracellular and surface targeting of NMDA receptors, particularly in postsynaptic sites including spines or small distal dendrites. High-resolution immunogold electron microscopic immunocytochemistry combined with morphometry were used to measure changes in targeting of the NMDA-NR1 (NR1) receptor subunit between intracellular and plasmalemmal sites in dendrites of neurons of the intermediate mNTS of rats self-administering escalating doses of morphine (EMSA). In control and EMSA rats, the density of plasmalemmal and cytosolic gold particles was inversely related to profile size. Collapsed across all NR1-labeled dendrites, rats self-administering morphine had a lower number of plasmalemmal gold particles per unit surface area (7.1 +/- 0.8 vs. 14.4 +/- 1 per 100 microm), but had a higher number of intracellular gold particles per unit cross-sectional area (169 +/- 6.1 vs. 148 +/- 5.1 per 100 microm2) compared to saline self-administering rats. Morphometric analysis showed that the decrease in plasma membrane labeling of NR1 was most robust in small dendritic profiles (<1 microm), where there was a reciprocal increase in the density of intracellular particles. These results indicate that the plasmalemmal distribution of the essential NR1 subunits in distal sites may prominently contribute to NMDA receptor-dependent modulation of neural circuitry regulating homeostatic processes, and targeting of these proteins can be prominently affected by morphine self-administration.

publication date

  • September 15, 2004

Research

keywords

  • Cell Membrane
  • Dendrites
  • Morphine
  • Morphine Dependence
  • Receptors, N-Methyl-D-Aspartate
  • Solitary Nucleus

Identity

Scopus Document Identifier

  • 3843150596

PubMed ID

  • 15266550

Additional Document Info

volume

  • 53

issue

  • 4