Disruption of mitochondrial membrane potential during apoptosis induced by PSC 833 and CsA in multidrug-resistant lymphoid leukemia.
Academic Article
Overview
abstract
Previous findings from our laboratory demonstrated that when used at low concentration (0.1 microg ml(-1)), CsA as well as its analog PSC 833 were able to revert the MDR phenotype, while at high concentration (1 microg ml(-1)) were able to induce apoptosis. CsA induced apoptosis in leukemia cell lines sensitive (LBR-) and resistant to vincristine (LBR-V160), and doxorubicin (LBR-D160), while PSC 833 only induced apoptosis in vincristine-resistant cell line (LBR-V160). In this work, we investigated mitochondrial-associated mechanisms during CsA- and PSC 833-induced apoptosis. Mitochondrial function was evaluated by recording changes in its transmembrane potential, cytochrome c release, and caspase activation cascade. Results showed that CsA- and PSC 833-induced apoptosis was associated with mitochondrial depolarization, through potentiometric measurements with JC-1 and DiOC(6) probes. Collapse of mitochondrial potential in these cell lines after CsA treatment was followed by cytochrome c release to the cytosol, reaching an increase of 2.61-fold in LBR-, 1.98-fold in LBR-V160, and 3.01-fold in the case of LBR-D160. However, in the case of PSC 833 treatment, induction of apoptosis in LBR-V160 was associated with mitochondrial depolarization followed by a lower cytochrome c release of 1.15-fold as compared with untreated cells. Caspase 3 activation was clearly observed in LBR-, LBR-V160, and LBR-D160 after CsA treatment, while in LBR-V160, PSC 833 was less effective inducing activation of this caspase. Neither caspase 6 nor 8 activity was observed in these three cell lines. Our results suggest that during CsA- and PSC 833-induced apoptosis, mitochondrial dysfunction occurs. This is mediated through mitochondrial events, associated with an evident decrease in DeltaPsi(m), cytochrome c release and caspase 3 activation.