Decreased lipid efflux and increased susceptibility to cholesterol-induced apoptosis in macrophages lacking phosphatidylcholine transfer protein.
Academic Article
Overview
abstract
Macrophages are the predominant cellular component of atherosclerotic lesions, where they scavenge oxidatively modified lipoproteins while defending themselves against cholesterol-induced cytotoxicity by adaptive mechanisms that depend in part on the synthesis, distribution and efflux of phosphatidylcholines. PC-TP (phosphatidylcholine transfer protein) is a START (steroidogenic acute regulatory protein-related lipid transfer) domain protein that catalyses the intermembrane transfer of phosphatidylcholines and promotes apolipoprotein AI-mediated lipid efflux when overexpressed in the cytosol of Chinese-hamster ovary cells. To explore a role for PC-TP in the adaptive responses of macrophages to cholesterol loading, we utilized peritoneal macrophages from mice with homozygous disruption of the gene encoding PC-TP (Pctp(-/-)) and wild-type littermate controls. PC-TP was abundantly expressed in macrophages from wild-type but not Pctp(-/-) mice. In cholesteryl ester-loaded macrophages from Pctp(-/-) mice, the apolipoprotein AI-mediated efflux of phospholipids and cholesterol was decreased. This could be attributed to proportional decreases in the expression levels of ATP-binding cassette A1. Also, in response to free cholesterol loading, the absence of PC-TP from macrophages was associated with marked increases in apoptotic cell death. These findings suggest that PC-TP in macrophages may serve an atheroprotective role by defending against cholesterol-induced cytotoxicity.