Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Academic Article uri icon

Overview

abstract

  • The role of mitochondrial dysfunction in cancer has been a subject of great interest and much ongoing investigation. Although most cancer cells harbor somatic mutations in mitochondrial DNA (mtDNA), the question of whether such mutations contribute to the promotion of carcinomas remains unsolved. Here we used trans-mitochondrial hybrids (cybrids) containing a common HeLa nucleus and mtDNA of interest to compare the role of mtDNA against the common nuclear background. We constructed cybrids with or without a homoplasmic pathogenic point mutation at nucleotide position 8,993 or 9,176 in the mtDNA ATP synthase subunit 6 gene (MTATP6) derived from patients with mitochondrial encephalomyopathy. When the cybrids were transplanted into nude mice, the MTATP6 mutations conferred an advantage in the early stage of tumor growth. The mutant cybrids also increased faster than wild type in culture. To complement the mtDNA mutations, we transfected a wild-type nuclear version of MTATP, whose codons were converted to the universal genetic codes containing a mitochondrial target sequence, into the nucleus of cybrids carrying mutant MTATP6. The restoration of MTATP slowed down the growth of tumor in transplantation. Conversely, expression of a mutant nuclear version of MTATP6 in the wild-type cybrids declined respiration and accelerated the tumor growth. These findings showed that the advantage in tumor growth depended upon the MTATP6 function but was not due to secondary nuclear mutations caused by the mutant mitochondria. Because apoptosis occurred less frequently in the mutant versus wild-type cybrids in cultures and tumors, the pathogenic mtDNA mutations seem to promote tumors by preventing apoptosis.

publication date

  • March 1, 2005

Research

keywords

  • Adenosine Triphosphatases
  • Apoptosis
  • DNA, Mitochondrial
  • Mitochondria
  • Neoplasms, Experimental
  • Point Mutation

Identity

Scopus Document Identifier

  • 16444386967

PubMed ID

  • 15753359

Additional Document Info

volume

  • 65

issue

  • 5