Combined genetic assessment of transforming growth factor-beta signaling pathway variants may predict breast cancer risk. Academic Article uri icon

Overview

abstract

  • There is growing evidence that common variants of the transforming growth factor-beta (TGF-beta) signaling pathway may modify breast cancer risk. In vitro studies have shown that some variants increase TGF-beta signaling, whereas others have an opposite effect. We tested the hypothesis that a combined genetic assessment of two well-characterized variants may predict breast cancer risk. Consecutive patients (n = 660) with breast cancer from the Memorial Sloan-Kettering Cancer Center (New York, NY) and healthy females (n = 880) from New York City were genotyped for the hypomorphic TGFBR1*6A allele and for the TGFB1 T29C variant that results in increased TGF-beta circulating levels. Cases and controls were of similar ethnicity and geographic location. Thirty percent of cases were identified as high or low TGF-beta signalers based on TGFB1 and TGFBR1 genotypes. There was a significantly higher proportion of high signalers (TGFBR1/TGFBR1 and TGFB1*CC) among controls (21.6%) than cases (15.7%; P = 0.003). The odds ratio [OR; 95% confidence interval (95% CI)] for individuals with the lowest expected TGF-beta signaling level (TGFB1*TT or TGFB1*TC and TGFBR1*6A) was 1.69 (1.08-2.66) when compared with individuals with the highest expected TGF-signaling levels. Breast cancer risk incurred by low signalers was most pronounced among women after age 50 years (OR, 2.05; 95% CI, 1.01-4.16). TGFBR1*6A was associated with a significantly increased risk for breast cancer (OR, 1.46; 95% CI, 1.04-2.06), but the TGFB1*CC genotype was not associated with any appreciable risk (OR, 0.89; 95% CI, 0.63-1.21). TGFBR1*6A effect was most pronounced among women diagnosed after age 50 years (OR, 2.20; 95% CI, 1.25-3.87). This is the first study assessing the TGF-beta signaling pathway through two common and functionally relevant TGFBR1 and TGFB1 variants. This approach may predict breast cancer risk in a large subset of the population.

publication date

  • April 15, 2005

Research

keywords

  • Breast Neoplasms
  • Transforming Growth Factor beta

Identity

Scopus Document Identifier

  • 20244383746

PubMed ID

  • 15833881

Additional Document Info

volume

  • 65

issue

  • 8