Prediction of myelotoxicity based on bone marrow radiation-absorbed dose: radioimmunotherapy studies using 90Y- and 177Lu-labeled J591 antibodies specific for prostate-specific membrane antigen. Academic Article uri icon

Overview

abstract

  • UNLABELLED: In radioimmunotherapy, myelotoxicity due to bone marrow radiation-absorbed dose is the predominant factor and frequently is the dose-limiting factor that determines the maximum tolerated dose (MTD). With (90)Y- and (131)I-labeled monoclonal antibodies, it has been reported that myelotoxicity cannot be predicted on the basis of the amount of radioactive dose administered or the bone marrow radiation-absorbed dose (BMrad), estimated using blood radioactivity concentration. As part of a phase I dose-escalation study in patients with prostate cancer with (90)Y-DOTA-J591 (DOTA = 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) ((90)Y-J591) and (177)Lu-DOTA-J591 ((177)Lu-J591), we evaluated the potential value of several factors in predicting myelotoxicity. METHODS: Seven groups of patients (n = 28) received 370-2,775 MBq/m(2) (10-75 mCi/m(2)) of (177)Lu-J591 and 5 groups of patients (n = 27) received 185-740 MBq (5-20 mCi/m(2)) of (90)Y-J591. Pharmacokinetics and imaging studies were performed for 1-2 wk after (177)Lu treatment, whereas patients receiving (90)Y had these studies performed with (111)In-DOTA-J591 ((111)In-J591) as a surrogate. The BMrad was estimated based on blood radioactivity concentration. Myelotoxicity consisting of thrombocytopenia or neutropenia was graded 1-4 based on criteria of the National Cancer Institute. RESULTS: Blood pharmacokinetics are similar for both tracers. The radiation dose (mGy/MBq) to the bone marrow was 3 times higher with (90)Y (0.91 +/- 0.43) compared with that with (177)Lu (0.32 +/- 0.10). The MTD was 647.5 MBq/m(2) with (90)Y-J591 and 2,590 MBq/m(2) with (177)Lu-J591. The percentage of patients with myelotoxicity (grade 3-4) increased with increasing doses of (90)Y (r = 0.91) or (177)Lu (r = 0.92). There was a better correlation between the radioactive dose administered and the BMrad with (177)Lu (r = 0.91) compared with that with (90)Y (r = 0.75). In addition, with (177)Lu, the fractional decrease in platelets (FDP) correlates well with both the radioactive dose administered (r = 0.88) and the BMrad (r = 0.86). In contrast, with (90)Y, there was poor correlation between the FDP and the radioactive dose administered (r = 0.20) or the BMrad (r = 0.26). Similar results were also observed with white blood cell toxicity. CONCLUSION: In patients with prostate cancer, myelotoxicity after treatment with (177)Lu-J591 can be predicted on the basis of the amount of radioactive dose administered or the BMrad. The lack of correlation between myelotoxicity and (90)Y-J591 BMrad may be due to several factors. (90)Y-J591 may be less stable in vivo and, as a result, higher amounts of free (90)Y may be localized in the bone. In addition, the cross-fire effect of high-energy beta(-)-particles within the bone and the marrow may deliver radiation dose nonuniformly within the marrow.

publication date

  • May 1, 2005

Research

keywords

  • Antibodies, Monoclonal
  • Bone Marrow
  • Bone Marrow Diseases
  • Maximum Tolerated Dose
  • Prostate-Specific Antigen
  • Radiation Injuries
  • Yttrium Radioisotopes

Identity

Scopus Document Identifier

  • 20644436713

PubMed ID

  • 15872360

Additional Document Info

volume

  • 46

issue

  • 5