Targeting dopamine D2 and cannabinoid-1 (CB1) receptors in rat nucleus accumbens.
Academic Article
Overview
abstract
The nucleus accumbens (Acb) shell and core are essential components of neural circuitry mediating the reward and motor effects produced by activation of dopamine D2 or cannabinoid-1 (CB1) receptors. D2 receptors can form heterodimeric complexes with cannabinoid-1 (CB1) receptors and are also involved in control of the availability of both dopamine and endocannabinoids. Thus, the subcellular locations of D2 and CB1 receptors with respect to each other are implicit to their physiological actions in the Acb. We used electron microscopic immunocytochemistry to determine these locations in the Acb shell and core of rat brain. In each region, many neuronal profiles showed endomembrane and plasmalemmal distributions of one or both receptors. Approximately one-third of the labeled profiles were somata and dendrites, some of which showed overlapping subcellular distributions of D2 and CB1 immunoreactivities. The remaining labeled profiles were small axons and axon terminals containing CB1 and/or D2 receptors. Of the labeled terminals forming recognizable synapses, approximately 20% of those containing CB1 receptors contacted D2-labeled dendrites, while conversely, almost 15% of those containing D2 receptors contacted CB1-labeled dendrites. These results provide the first ultrastructural evidence that D2 and CB1 receptors in the Acb shell and core have subcellular distributions supporting both intracellular associations and local involvement of D2 receptors in making available endocannabinoids that are active on CB1 receptors in synaptic neurons. These distributions have direct relevance to the rewarding and euphoric as well as motor effects produced by marijuana and by addictive drugs enhancing dopamine levels in the Acb.