Annotated proteome of a human T-cell lymphoma. Academic Article uri icon

Overview

abstract

  • As the reliable identification of proteins by tandem mass spectrometry becomes increasingly common, the full characterization of large data sets of proteins remains a difficult challenge. Our goal was to survey the proteome of a human T-cell lymphoma-derived cell line in a single set of experiments and present an automated method for the annotation of lists of proteins. A downstream application of these data includes the identification of novel pathogenetic and candidate diagnostic markers of T-cell lymphoma. Total protein isolated from cytoplasmic, membrane, and nuclear fractions of the SUDHL-1 T-cell lymphoma cell line was resolved by SDS-PAGE, and the entire gel lanes digested and analyzed by tandem mass spectrometry. Acquired data files were searched against the UniProt protein database using the SEQUEST algorithm. Search results for each subcellular fraction were analyzed using INTERACT and ProteinProphet. All protein identifications with an error rate of less than 10% were directly exported into excel and analyzed using GOMiner (NIH/NCI). The Gene ontology molecular function and cell location data were summarized for the identified proteins and results exported as user-interactive directed acyclic graphs. A total of 1105 unique proteins were identified and fully annotated, including numerous proteins that had not been previously characterized in lymphoma, in functional categories such as cell adhesion, migration, signaling, and stress response. This study demonstrates the utility of currently available bioinformatics tools for the robust identification and annotation of large numbers of proteins in a batchwise fashion.

publication date

  • December 1, 2005

Research

keywords

  • Biomarkers, Tumor
  • Lymphoma, T-Cell
  • Proteins
  • Proteome

Identity

PubMed Central ID

  • PMC2291739

Scopus Document Identifier

  • 84867501380

PubMed ID

  • 16522855

Additional Document Info

volume

  • 16

issue

  • 4