Mass spectrometry-based proteomic studies of human anaplastic large cell lymphoma.
Review
Overview
abstract
Malignant lymphomas are a diverse group of malignant neoplasms that arise as a result of a complex interplay of multiple factors including genetic aberrations, immunosuppression, and exposure to noxious agents such as ionizing radiation and chemical agents. Anaplastic large cell lymphoma (ALCL) is an aggressive T-lineage lymphoma harboring chromosomal translocations involving the anaplastic lymphoma kinase (ALK) tyrosine kinase. The most common translocation in ALCL is the t(2;5)(p23;q35). This results in the formation of a chimeric fusion kinase, nucleophosmin/ALK. Nucleophosmin/ALK activates numerous downstream signaling pathways resulting in enhanced survival and proliferation. Using a variety of mass spectrometry-driven proteomic strategies, we have studied several aspects of the ALCL proteome. In this review, we provide a summary of mass spectrometry-based proteomic studies that expands the current understanding of the molecular pathogenesis of ALCL and provides the basis for the identification of biomarkers and targets for novel therapeutic agents.