Stimulation by cGMP of apical Na channels and cation channels in toad urinary bladder. Academic Article uri icon

Overview

abstract

  • The effects of 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) on apical membrane cation conductances in the toad urinary bladder were investigated. 8-BrcGMP (1 mM) added to the serosal solution increased the amiloride-sensitive short-circuit current (INa) after a delay of 5 min to a steady-state value 1.8 times that of controls achieved after 30 min. Similar effects were seen when the bladders were bathed on the serosal side with a normal NaCl Ringer solution and with a high-K sucrose solution to depolarize the basolateral membrane. Under the latter conditions, the amiloride-sensitive transepithelial conductance increased in parallel with the short-circuit current, indicating stimulation of apical membrane Na channels. The threshold concentration for observing the stimulation of INa was 100 microM, 10-100 times larger than the concentration of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) required to elicit an increase in INa. Currents through an outwardly rectifying Ca-sensitive cation conductance (Iout) were also increased by 1.8-fold relative to controls. This stimulatory effect occurred after a delay of 15 min and reached maximal levels 90-120 min after addition of the nucleotide. The effects of cGMP on INa were not additive with those of 8-BrcAMP or with antidiuretic hormone, an agent known to act by increasing cAMP within the cell. Addition of 1 mM 3-isobutyl-1-methylxanthine to the serosal side of the bladders stimulated INa by 1.3-fold and Iout by 2.4-fold. In both cases, subsequent addition of cGMP produced no further activation of either conductance.(ABSTRACT TRUNCATED AT 250 WORDS)

publication date

  • February 1, 1991

Research

keywords

  • Cyclic GMP
  • Ion Channels
  • Sodium Channels
  • Urinary Bladder

Identity

Scopus Document Identifier

  • 0025968620

Digital Object Identifier (DOI)

  • 10.1152/ajpcell.1991.260.2.C234

PubMed ID

  • 1705097

Additional Document Info

volume

  • 260

issue

  • 2 Pt 1