PlexinA1 signaling directs the segregation of proprioceptive sensory axons in the developing spinal cord. Academic Article uri icon

Overview

abstract

  • As different classes of sensory neurons project into the CNS, their axons segregate and establish distinct trajectories and target zones. One striking instance of axonal segregation is the projection of sensory neurons into the spinal cord, where proprioceptive axons avoid the superficial dorsal horn-the target zone of many cutaneous afferent fibers. PlexinA1 is a proprioceptive sensory axon-specific receptor for sema6C and sema6D, which are expressed in a dynamic pattern in the dorsal horn. The loss of plexinA1 signaling causes the shafts of proprioceptive axons to invade the superficial dorsal horn, disrupting the organization of cutaneous afferents. This disruptive influence appears to involve the intermediary action of oligodendrocytes, which accompany displaced proprioceptive axon shafts into the dorsal horn. Our findings reveal a dedicated program of axonal shaft positioning in the mammalian CNS and establish a role for plexinA1-mediated axonal exclusion in organizing the projection pattern of spinal sensory afferents.

publication date

  • December 7, 2006

Research

keywords

  • Axons
  • Nerve Tissue Proteins
  • Neurons, Afferent
  • Proprioception
  • Receptors, Cell Surface
  • Signal Transduction
  • Spinal Cord

Identity

PubMed Central ID

  • PMC1847564

Scopus Document Identifier

  • 34249712685

Digital Object Identifier (DOI)

  • 10.1016/j.neuron.2006.10.032

PubMed ID

  • 17145500

Additional Document Info

volume

  • 52

issue

  • 5