Effects of high pressure on the catalytic and regulatory properties of UDP-glucuronosyltransferase in intact microsomes. Academic Article uri icon

Overview

abstract

  • The effects of high pressure on the kinetic properties of microsomal UDP-glucuronosyltransferase (assayed with 1-naphthol as aglycon) were studied in the range of 0.001-2.2 kbar to clarify further the basis for regulating this enzyme in untreated microsomes. Activity changed in a discontinuous manner as a function of pressure. Activation occurred at pressure as low as 0.1 kbar, reaching one of two maxima at 0.2 kbar. As pressure was increased above 0.2 kbar, activity decreased, reaching a minimum at about 1.4 kbar followed by a second activation. The pathway for activation at pressure greater than 1.4 kbar was complex. The immediate effect of 2.2 kbar was nearly complete inhibition of activity. The inhibited state relaxed, however, over about 10 min (at 10 degrees C), to a state that was activated as compared with enzyme at 0.001 kbar or enzyme at pressures between 1.4 and 2.2 kbar, which was the highest pressure we could test. Examination of the detailed kinetic properties of UDP-glucuronosyltransferase indicated that the effects of pressure were due to selective stabilization of unique functional states of the enzyme at 0.2 and 2.2 kbar. Activation at 0.2 kbar was reversible when pressure was released. This was true as well as for activation at pressure greater than 1.4 kbar, but after prolonged treatment at 2.2 kbar, UDP-glucuronosyltransferase became activated irreversibly on release of pressure. The process by which prolonged treatment at 2.2 kbar led to permanent activation of UDP-glucuronosyltransferase after release of pressure was not reflected, however, by time-dependent changes in the functional state of UDP-glucuronosyltransferase at this pressure.(ABSTRACT TRUNCATED AT 250 WORDS)

publication date

  • January 14, 1992

Research

keywords

  • Glucuronosyltransferase
  • Microsomes, Liver

Identity

Scopus Document Identifier

  • 0026507502

PubMed ID

  • 1731869

Additional Document Info

volume

  • 31

issue

  • 1