A perfusion bioreactor for intestinal tissue engineering. Academic Article uri icon

Overview

abstract

  • BACKGROUND: Short gut syndrome is a devastating clinical problem with limited long-term treatment options. A unique characteristic of the normal intestinal epithelium is its capacity for regeneration and adaptation. Despite this tremendous capacity in vivo, one of the major limitations in advancing the understanding of intestinal epithelial differentiation and proliferation has been the difficulty in maintaining primary cultures of normal gut epithelium in vitro. A perfusion bioreactor system has been shown to be beneficial in long-term culture and bioengineering of a variety of tissues. The purpose of this study is to design and fabricate a perfusion bioreactor for intestinal tissue engineering. MATERIALS AND METHODS: A perfusion bioreactor is fabricated using specific parameters. Intestinal epithelial organoid units harvested from neonatal rats are seeded onto biodegradable polymer scaffolds and cultured for 2 d in the bioreactor. Cell attachment, viability, and survival are assessed using MTT assay, scanning electron micrograph, and histology. RESULTS: A functional perfusion bioreactor was successfully designed and manufactured. MTT assay and scanning electron micrograph demonstrated successful attachment of viable cells onto the polymer scaffolds. Histology confirmed the survival of intestinal epithelial cells seeded on the scaffolds and cultured in the perfusion bioreactor for 2 days. CONCLUSIONS: A functional perfusion bioreactor can be successfully fabricated for the in-vitro cultivation of intestinal epithelial cells. With further optimization, the perfusion bioreactor may be a useful in in-vitro system for engineering new intestinal tissue.

publication date

  • July 19, 2007

Research

keywords

  • Bioreactors
  • Intestines
  • Tissue Engineering

Identity

Scopus Document Identifier

  • 34548670519

Digital Object Identifier (DOI)

  • 10.1016/j.jss.2007.03.039

PubMed ID

  • 17640672

Additional Document Info

volume

  • 142

issue

  • 2