Role of a sodium-dependent symporter homologue in the thermosensitivity of beta-lactam antibiotic resistance and cell wall composition in Staphylococcus aureus.
Academic Article
Overview
abstract
Expression of high-level beta-lactam resistance is known to be thermosensitive in many methicillin-resistant Staphylococcus aureus (MRSA) strains, including strain COL, in which the high methicillin MIC for cultures grown at 37 degrees C (800 microg/ml) was reduced to 12 microg/ml at 42 degrees C. COL grew faster at 42 degrees C than at 37 degrees C and at the higher temperature produced cell walls of abnormal composition: there was an over-representation of the monomeric muropeptide without the oligoglycine chain and an increase in the representation of multimers that contained this wall component as the donor molecule. Screening of a Tn551 insertional library for mutants, in which the high and homogenous beta-lactam antibiotic resistance of strain COL is retained at 42 degrees C, identified mutant C245, which expressed high-level methicillin resistance and produced a cell wall of normal composition independent of the temperature. The Tn551 inactivated gene was found, by homology search, to encode for a sodium-dependent symporter, homologues of which are ubiquitous in both prokaryotic and eukaryotic genomes. Inactivation of this putative symporter in several heteroresistant clinical MRSA isolates caused striking increases in the level of their beta-lactam resistance.