Molecular mechanisms underlying the synergistic interaction of erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor, with the multitargeted antifolate pemetrexed in non-small-cell lung cancer cells. Academic Article uri icon

Overview

abstract

  • Because the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib and the multitargeted antifolate pemetrexed are registered in the treatment of second-line non-small-cell lung cancer (NSCLC), empirical combinations of these drugs are being tested. This study investigated molecular mechanisms underlying their combination in six NSCLC cell lines. Cells were characterized by heterogeneous expression of pemetrexed determinants, including thymidylate synthase (TS) and dihydrofolate reductase (DHFR), and mutations potentially affecting chemosensitivity. Pharmacological interaction was studied using the combination index (CI) method, whereas cell cycle, apoptosis induction, and EGFR, extracellular signal-regulated kinases 1 and 2, and Akt phosphorylation were studied by flow cytometry, fluorescence microscopy, and enzyme-linked immunosorbent assays. Reverse-transcriptase polymerase chain reaction (RT-PCR), Western blot, and activity assays were performed to assess whether erlotinib influenced TS. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assays demonstrated that EGFR and k-Ras mutations were related to erlotinib sensitivity, whereas TS and DHFR expression were related to pemetrexed sensitivity. Synergistic cytotoxicity was found in all cells, most pronounced with pemetrexed + erlotinib (24 h) --> erlotinib (48 h) sequence (CI, 0.09-0.40), which was associated with a significant induction of apoptosis. Pemetrexed increased EGFR phosphorylation and reduced Akt phosphorylation, which was additionally reduced by drug combination (-70.6% in H1650). Erlotinib significantly reduced TS expression and activity, possibly via E2F-1 reduction, as detected by RT-PCR and Western blot, and the combination decreased TS in situ activity in all cells. Erlotinib and pemetrexed showed a strong synergism in NSCLC cells, regardless of their genetic characteristics. Induction of apoptosis, modulation of EGFR and Akt phosphorylation, and changes in the expression of critical genes involved in pemetrexed activity contribute to this synergistic interaction and support the clinical investigation of these markers.

publication date

  • January 10, 2008

Research

keywords

  • Antineoplastic Agents
  • Carcinoma, Non-Small-Cell Lung
  • ErbB Receptors
  • Folic Acid Antagonists
  • Glutamates
  • Guanine
  • Lung Neoplasms
  • Quinazolines

Identity

Scopus Document Identifier

  • 41149096042

Digital Object Identifier (DOI)

  • 10.1124/mol.107.042382

PubMed ID

  • 18187583

Additional Document Info

volume

  • 73

issue

  • 4