Imaging hypoxia in orthotopic rat liver tumors with iodine 124-labeled iodoazomycin galactopyranoside PET.
Academic Article
Overview
abstract
PURPOSE: To evaluate iodine 124 (124I)-labeled iodoazomycin galactopyranoside (IAZGP) positron emission tomography (PET) in the detection of hypoxia in an orthotopic rat liver tumor model by comparing regions of high (124)I-IAZGP uptake with independent measures of hypoxia and to determine the optimal time after injection to depict hypoxia. MATERIALS AND METHODS: The institutional animal care and use committee approved this study. Morris hepatoma tumors were established in the livers of 15 rats. Tumor oxygenation was measured in two rats with a fluorescence fiberoptic oxygen probe. (124)I-IAZGP was coadministered with the established hypoxia markers pimonidazole and EF5 in nine rats; 12-hour PET data acquisition was performed 24 hours later. Tumor cryosections were analyzed with immunofluorescence and autoradiography. In the four remaining rats, serial 20- and 60-minute PET data acquisition was peformed up to 48 hours after tracer administration. RESULTS: Oxygen probe measurements showed severe hypoxia (<1 mm Hg) distributed evenly throughout tumor tissue. Analysis of cryosections showed diffuse homogeneous uptake of (124)I-IAZGP throughout all tumors. The (124)I-IAZGP distribution correlated positively with pimonidazole (r = 0.78) and EF5 (r = 0.76) distribution. Tracer uptake in tumors was detectable with PET after 24 hours in seven of nine rats. In rats that underwent serial PET, tumor-to-liver contrast was sufficient to enable detection of hypoxia between 6 and 48 hours after tracer administration. The optimal ratio between signal intensity and tumor-to-liver contrast occurred 6 hours after tracer administration. CONCLUSION: Regions of high (124)I-IAZGP uptake in orthotopic rat liver tumors are consistent with independent measures of hypoxia; visualization of hypoxia with (124)I-IAZGP PET is optimal 6 hours after injection.