Hepatocellular carcinoma (HCC) is a major cause of cancer death worldwide. As in many other types of cancer, aberrant activation of the canonical Wnt/beta-catenin signaling pathway is an important contributor to tumorigenesis. In HCC this frequently occurs through mutations in the N-terminal region of beta-catenin that stabilize the protein and permit an elevated level of constitutive transcriptional activation by beta-catenin/TCF complexes. In this article we review the abundant evidence that Wnt/beta-catenin signaling contributes to liver carcinogenesis. We also discuss what is known about the roles of Wnt signaling in liver development, regeneration, and stem cell behavior, in an effort to understand the mechanisms by which activation of the canonical Wnt pathway promotes tumor formation in this organ. The Wnt/beta-catenin pathway presents itself as an attractive target for developing novel rational therapies for HCC, a disease for which few successful treatment strategies are currently available.