Long-pore electrostatics in inward-rectifier potassium channels. Academic Article uri icon

Overview

abstract

  • Inward-rectifier potassium (Kir) channels differ from the canonical K(+) channel structure in that they possess a long extended pore (approximately 85 A) for ion conduction that reaches deeply into the cytoplasm. This unique structural feature is presumably involved in regulating functional properties specific to Kir channels, such as conductance, rectification block, and ligand-dependent gating. To elucidate the underpinnings of these functional roles, we examine the electrostatics of an ion along this extended pore. Homology models are constructed based on the open-state model of KirBac1.1 for four mammalian Kir channels: Kir1.1/ROMK, Kir2.1/IRK, Kir3.1/GIRK, and Kir6.2/KATP. By solving the Poisson-Boltzmann equation, the electrostatic free energy of a K(+) ion is determined along each pore, revealing that mammalian Kir channels provide a favorable environment for cations and suggesting the existence of high-density regions in the cytoplasmic domain and cavity. The contribution from the reaction field (the self-energy arising from the dielectric polarization induced by the ion's charge in the complex geometry of the pore) is unfavorable inside the long pore. However, this is well compensated by the electrostatic interaction with the static field arising from the protein charges and shielded by the dielectric surrounding. Decomposition of the static field provides a list of residues that display remarkable correspondence with existing mutagenesis data identifying amino acids that affect conduction and rectification. Many of these residues demonstrate interactions with the ion over long distances, up to 40 A, suggesting that mutations potentially affect ion or blocker energetics over the entire pore. These results provide a foundation for understanding ion interactions in Kir channels and extend to the study of ion permeation, block, and gating in long, cation-specific pores.

publication date

  • November 10, 2008

Research

keywords

  • Ion Transport
  • Models, Molecular
  • Potassium Channels, Inwardly Rectifying
  • Protein Interaction Domains and Motifs
  • Thermodynamics

Identity

PubMed Central ID

  • PMC2585864

Scopus Document Identifier

  • 59649091228

Digital Object Identifier (DOI)

  • 10.1085/jgp.200810068

PubMed ID

  • 19001143

Additional Document Info

volume

  • 132

issue

  • 6