Endothelial molecular changes in a rodent model of arteriovenous malformation. Academic Article uri icon

Overview

abstract

  • OBJECT: The cellular and molecular processes underlying arteriovenous malformation (AVM) development and response to radiosurgery are largely unknown. An animal model mimicking the molecular properties of AVMs is required to examine these processses. This study was performed to determine whether the endothelial molecular changes in an animal model of arteriovenous fistula (AVF) are similar to those in human AVMs. METHODS: Arteriovenous fistulas were created in 18 Sprague-Dawley rats by end-to-side anastomosis of the left jugular vein to the common carotid artery creating a model "nidus" of arterialized branching veins that coalesce into a "draining vein" (sigmoid sinus). Six control animals underwent sham operations. RESULTS: After 1 or 3 days, or 1, 3, 6, or 12 weeks, fresh-frozen sections of the fistula, nidus vessels, and contralateral vessels were studied immunohistochemically for thrombomodulin, von Willebrand factor, E-selectin, P-selectin, and vascular endothelial growth factor. CONCLUSIONS: The AVF model has a "nidus" with endothelial molecular changes similar to those observed in human AVMs, supporting its use as a model for studying the effects of radiosurgery on AVMs.

publication date

  • December 1, 2008

Research

keywords

  • Arteriovenous Malformations
  • Endothelium, Vascular
  • Models, Animal

Identity

Scopus Document Identifier

  • 58149391006

Digital Object Identifier (DOI)

  • 10.3171/JNS.2008.109.12.1165

PubMed ID

  • 19035737

Additional Document Info

volume

  • 109

issue

  • 6