NHERF1 regulates parathyroid hormone receptor desensitization: interference with beta-arrestin binding. Academic Article uri icon

Overview

abstract

  • Type 1 parathyroid hormone receptor (PTH1R) activation, desensitization, internalization, and recycling proceed in a cyclical manner. The Na(+)/H(+) exchange regulatory factor 1 (NHERF1) is a cytoplasmic adapter protein that regulates trafficking and signaling of several G protein-coupled receptors (GPCRs) including the PTH1R. The mineral ion wasting and bone phenotype of NHERF1-null mice suggests that PTH1R may interact with NHERF1. The objective of this study was to examine the effect of NHERF1 on PTH1R desensitization. Using rat osteosarcoma T6-N4 cells expressing the endogenous PTH1R, in which NHERF1 expression could be induced by tetracycline, PTH1R desensitization was assessed by measuring adenylyl cyclase activity after successive PTH challenges. PTH1R-mediated adenylyl cyclase responses were desensitized by repetitive PTH challenges in a concentration-dependent manner, and desensitization was inhibited by NHERF1. NHERF1 blocked PTH-induced dissociation of the PTH1R from Galpha(s). Blocking PTH1R endocytosis did not mitigate PTH1R desensitization. Reducing constitutive NHERF1 levels in human osteosarcoma SAOS2 cells, which express both endogenous PTH1R and NHERF1, with short hairpin RNA directed against NHERF1 restored PTH1R desensitization. Mutagenesis of the PDZ-binding domains or deletion of the NHERF1 MERM domain demonstrated that both are required for inhibition of receptor desensitization. A phosphorylation-deficient PTH1R exhibited reduced desensitization and interaction with beta-arrestin2 compared with wild-type PTH1R. NHERF1 inhibited beta-arrestin2 binding to wtPTH1R but had no effect on beta-arrestin2 association with pdPTH1R. Such an effect may protect against PTH resistance or PTH1R down-regulation in cells harboring NHERF1.

publication date

  • February 2, 2009

Research

keywords

  • Arrestins
  • Phosphoproteins
  • Receptor, Parathyroid Hormone, Type 1
  • Sodium-Hydrogen Exchangers

Identity

PubMed Central ID

  • PMC2672812

Scopus Document Identifier

  • 66149096210

Digital Object Identifier (DOI)

  • 10.1124/mol.108.054486

PubMed ID

  • 19188335

Additional Document Info

volume

  • 75

issue

  • 5