Evaluation of early osteochondral defect repair in a rabbit model utilizing fourier transform-infrared imaging spectroscopy, magnetic resonance imaging, and quantitative T2 mapping. Academic Article uri icon

Overview

abstract

  • CONTEXT: Evaluation of the morphology and matrix composition of repair cartilage is a critical step toward understanding the natural history of cartilage repair and efficacy of potential therapeutics. In the current study, short-term articular cartilage repair (3 and 6 weeks) was evaluated in a rabbit osteochondral defect model treated with thrombin peptide (TP-508) using magnetic resonance imaging (MRI), quantitative T2 mapping, and Fourier transform-infrared imaging spectroscopy (FT-IRIS). METHODS: Three-mm-diameter osteochondral defects were made in the rabbit trochlear groove and filled with either TP-508 plus poly-lactoglycolidic acid microspheres or poly-lactoglycolidic acid microspheres alone (placebo). Repair tissue and adjacent normal cartilage were evaluated at 3 and 6 weeks postdefect creation. Intact knees were evaluated by magnetic resonance imaging for repair morphology, and with quantitative T2 mapping to assess collagen orientation. Histological sections were evaluated by FT-IRIS for parameters that reflect collagen quantity and quality, as well as proteoglycan (PG) content. RESULTS AND CONCLUSION: There was no significant difference in volume of repair tissue at either time point. At 6 weeks, placebo repair tissue demonstrated longer T2 values (p < 0.01) than TP-508 did. Although both placebo and TP-508 repair tissue demonstrated longer T2 values than adjacent normal cartilage did, the 6-week T2 values of the TP-508 specimens were closer to those of the adjacent normal cartilage than were the placebo values. FT-IRIS analysis demonstrated a significant increase in collagen content, integrity, and PG content of the TP-508 repair tissue from 3 to 6 weeks (p < or = 0.05). In addition, the collagen and PG content of the TP-508 samples were closer to normal cartilage at 3 weeks than were the placebo samples. Further, there was a significant inverse correlation between the T2 relaxation values and collagen orientation in the normal cartilage. However, there were no significant correlations between T2 relaxation values and any FT-IRIS parameter in the repair tissue. Together, the data demonstrate that MRI and FT-IRIS assessment of cartilage repair tissue provide molecular information that furthers understanding of the cartilage repair process.

publication date

  • June 1, 2010

Research

keywords

  • Cartilage, Articular
  • Magnetic Resonance Imaging
  • Models, Animal
  • Spectroscopy, Fourier Transform Infrared

Identity

PubMed Central ID

  • PMC2945312

Scopus Document Identifier

  • 77952919520

Digital Object Identifier (DOI)

  • 10.1089/ten.TEC.2009.0020

PubMed ID

  • 19586313

Additional Document Info

volume

  • 16

issue

  • 3