Bortezomib up-regulates activated signal transducer and activator of transcription-3 and synergizes with inhibitors of signal transducer and activator of transcription-3 to promote head and neck squamous cell carcinoma cell death. Academic Article uri icon

Overview

abstract

  • Head and neck squamous cell carcinomas (HNSCC) are commonly resistant to conventional chemotherapy drugs and exhibit overexpression of signal transducer and activator of transcription 3 (STAT3). STAT3 promotes both the proliferation and survival of HNSCC cells. Recent studies have shown that the proteasome inhibitor bortezomib shows cytotoxic activity against HNSCC in vitro and in vivo. We report that treatment of HNSCC cells with bortezomib led to up-regulation of total STAT3 protein and the phosphorylated/activated form of STAT3, as well as an increase in cellular STAT3 activity. This suggested that the ability of bortezomib to kill HNSCC cells may be blunted due to induction of STAT3, and inhibition of STAT3 may be a useful means for improving bortezomib efficacy. Indeed, forced expression of dominant-active STAT3 inhibited bortezomib-induced cell death, whereas expression of dominant-negative STAT3 served to enhance killing by this compound. In addition, specific inhibition of STAT3 with the use of a STAT3 decoy oligonucleotide resulted in enhancement of bortezomib-induced apoptosis signaling and loss of clonogenic survival. Cotreatment of HNSCC cells with bortezomib and guggulsterone, a naturally occurring compound known to inhibit STAT3 activation, led to synergistic activation of cell death and loss of clonogenic survival. In summary, these studies show that bortezomib induces the expression of active STAT3, a key growth- promoting protein in HNSCC cells. Furthermore, our findings suggest that the therapeutic activity of bortezomib against HNSCC may be markedly improved by cotreatment with molecular targeting agents against STAT3.

publication date

  • July 28, 2009

Research

keywords

  • Boronic Acids
  • Carcinoma, Squamous Cell
  • Head and Neck Neoplasms
  • Pyrazines
  • STAT3 Transcription Factor
  • Signal Transduction
  • Up-Regulation

Identity

PubMed Central ID

  • PMC2768047

Scopus Document Identifier

  • 68849103713

Digital Object Identifier (DOI)

  • 10.1158/1535-7163.MCT-09-0327

PubMed ID

  • 19638453

Additional Document Info

volume

  • 8

issue

  • 8