The 8 and 5 kDa fragments of plasma gelsolin form amyloid fibrils by a nucleated polymerization mechanism, while the 68 kDa fragment is not amyloidogenic. Academic Article uri icon

Overview

abstract

  • Familial amyloidosis of Finnish type (FAF), or gelsolin amyloidosis, is a systemic amyloid disease caused by a mutation (D187N/Y) in domain 2 of human plasma gelsolin, resulting in domain 2 misfolding within the secretory pathway. When D187N/Y gelsolin passes through the Golgi, furin endoproteolysis within domain 2 occurs as a consequence of the abnormal conformations that enable furin to bind and cleave, resulting in the secretion of a 68 kDa C-terminal fragment (amino acids 173-755, C68). The C68 fragment is cleaved upon secretion from the cell by membrane type 1 matrix metalloprotease (MT1-MMP), affording the 8 and 5 kDa fragments (amino acids 173-242 and 173-225, respectively) comprising the amyloid fibrils in FAF patients. Herein, we show that the 8 and 5 kDa gelsolin fragments form amyloid fibrils by a nucleated polymerization mechanism. In addition to demonstrating the expected concentration dependence of a nucleated polymerization reaction, the addition of preformed amyloid fibrils, or "seeds", was shown to bypass the requirement for the formation of a high-energy nucleus, accelerating 8 and 5 kDa D187N gelsolin amyloidogenesis. The C68 fragment can form small oligomers, but not amyloid fibrils, even when seeded with preformed 8 kDa fragment plasma gelsolin fibrils. Because the 68 kDa fragment of gelsolin does not form amyloid fibrils in vitro or in a recently published transgenic mouse model of FAF, we propose that administration of an MT1-MMP inhibitor could be an effective strategy for the treatment of FAF.

publication date

  • December 8, 2009

Research

keywords

  • Amyloid
  • Amyloidosis
  • Gelsolin
  • Peptide Fragments

Identity

PubMed Central ID

  • PMC2907741

Scopus Document Identifier

  • 73149083275

Digital Object Identifier (DOI)

  • 10.1021/bi901368e

PubMed ID

  • 19904968

Additional Document Info

volume

  • 48

issue

  • 48