GABA and its relationship to putrescine metabolism in the rat brain and pancreas. Academic Article uri icon

Overview

abstract

  • The possibility that GABA may have its origin in putrescine was investigated in the rat pancreas, relative to the brain. These studies show that radioactive putrescine is converted to GABA at a similar rate in both the pancreas and brain, but that putrescine accounts for only a small fraction of the GABA found in these organs. Inhibitors of diamine and monoamine oxidases do not significantly change the GABA level in the pancreas. In contrast to the brain, where putrescine is catabolized to GABA via monoamine oxidase, the primary catabolic pathway of putrescine to GABA in the pancreas is via diamine oxidase. In vivo studies show that AOAA inhibits GABA-T activity to the same degree in the pancreas as in the brain, elevating GABA levels more than 2-fold in 4 h. GABA is metabolized more rapidly in the brain than the pancreas. Turnover times of GABA in the pancreas and brain are 1.9 and 1.0 h, respectively. The slower turnover of GABA in the pancreas than in the brain may relate to a neuromodulatory role for GABA, similar to that for neuropeptides. Developmental studies in the postnatal pancreas suggest a role for GABA in the maturation of insulin secretion.

publication date

  • January 1, 1987

Identity

PubMed ID

  • 20501074

Additional Document Info

volume

  • 10

issue

  • 2