Mechanotransduction in the renal tubule. Review uri icon

Overview

abstract

  • The role of mechanical forces in the regulation of glomerulotubular balance in the proximal tubule (PT) and Ca(2+) signaling in the distal nephron was first recognized a decade ago, when it was proposed that the microvilli in the PT and the primary cilium in the cortical collecting duct (CCD) acted as sensors of local tubular flow. In this review, we present a summary of the theoretical models and experiments that have been conducted to elucidate the structure and function of these unique apical structures in the modulation of Na(+), HCO(3)(-), and water reabsorption in the PT and Ca(2+) signaling in the CCD. We also contrast the mechanotransduction mechanisms in renal epithelium with those in other cells in which fluid shear stresses have been recognized to play a key role in initiating intracellular signaling, most notably endothelial cells, hair cells in the inner ear, and bone cells. In each case, small hydrodynamic forces need to be greatly amplified before they can be sensed by the cell's intracellular cytoskeleton to enable the cell to regulate its membrane transporters or stretch-activated ion channels in maintaining homeostasis in response to changing flow conditions.

publication date

  • September 1, 2010

Research

keywords

  • Kidney Tubules, Proximal
  • Mechanotransduction, Cellular

Identity

PubMed Central ID

  • PMC3006307

Scopus Document Identifier

  • 78649955082

Digital Object Identifier (DOI)

  • 10.1152/ajprenal.00453.2010

PubMed ID

  • 20810611

Additional Document Info

volume

  • 299

issue

  • 6