Enhanced growth inhibition by combined DNA methylation/HDAC inhibitors in lung tumor cells with silenced CDKN2A.
Academic Article
Overview
abstract
Aberrant hypermethylation at CpG sites within the CDKN2A gene is associated with silencing and has been proposed as a target for reactivation using both DNA methylation and histone deacetylation inhibitors. This study investigates the role of selecting tumor samples with a silenced as compared to deleted CDKN2A locus when assessing the efficacy of DNA methyltransferase inhibitor, zebularine, combined with the HDAC inhibitor, depsipeptide. Non-small cell lung cancer cell lines with defined CDKN2A status were analyzed by MTS assay to determine the effect of zebularine or zebularine combined with depsipeptide on tumor cell growth. We observed that zebularine treatment resulted in inhibition of cell growth in 11 out of 12 lung cancer cell lines with silenced CDKN2A, but no cell growth inhibition was detected in the 7 lung cancer cell lines tested with deleted CDKN2A (p>0.001). In addition, we found that the combination of 30 microM zebularine and 6 or 7 nM depsipeptide resulted in a synergistic inhibition of cell growth in tumor cells with silenced CDKN2A (p<0.001, CI=0.70 and 0.57, respectively) but not in tumor cells with deleted CDKN2A. In conclusion, tumor cells with methylated CDKN2A are more sensitive to zebularine than cell lines with deleted CDKN2A and the combination of zebularine/depsipeptide results in a synergistic effect on cell growth inhibition that is also linked with the presence of silenced CDKN2A. Thus, combination of DNA methyltransferase and HDAC inhibitors may be a potential treatment for lung cancer patients, but careful selection of patients will be needed to optimize the benefit of this regimen.