Coding polypurine hairpins cause target-induced cell death in breast cancer cells. Academic Article uri icon

Overview

abstract

  • Polypurine reverse-Hoogsteen hairpins (PPRHs) are double-stranded DNA molecules formed by two polypurine stretches linked by a pentathymidine loop, with intramolecular reverse-Hoogsteen bonds that allow a hairpin structure. PPRHs bind to polypyrimidine targets by Watson-Crick bonds maintaining simultaneously a hairpin structure due to intramolecular Hoogsteen bonds. Previously, we described the ability of Template-PPRHs to decrease mRNA levels because these PPRHs target the template DNA strand interfering with the transcription process. Now, we designed Coding-PPRHs, a new type of PPRHs that directly target the pre-mRNA. The dihydrofolate reductase (dhfr) gene was selected as a target in breast cancer therapy. These PPRHs caused a high degree of cytotoxicity and a decrease in DHFR mRNA and protein levels, but by a different mechanism of action than Template-PPRHs. Coding-PPRHs interfere with the splicing process by competing with U2 auxiliary factor 65 for binding to the polypyrimidine target sequence, leading to a lower amount of mature mRNA. These new PPRHs showed high specificity as no off-target effects were found. The application of these molecules as therapeutic tools was tested in breast cancer cells resistant to methotrexate, obtaining a noticeable cytotoxicity even though the dhfr locus was amplified. Coding-PPRHs can be considered as new molecules to decrease gene expression at the mRNA level and an alternative to other antisense molecules.

publication date

  • February 16, 2011

Research

keywords

  • Breast Neoplasms
  • DNA
  • Inverted Repeat Sequences

Identity

Scopus Document Identifier

  • 79954528482

Digital Object Identifier (DOI)

  • 10.1089/hum.2010.102

PubMed ID

  • 20942657

Additional Document Info

volume

  • 22

issue

  • 4