Electrical transport properties of peptide nanotubes coated with gold nanoparticles via peptide-induced biomineralization.
Academic Article
Overview
abstract
We present temperature dependent electrical transport measurements of peptide nanotube devices coated with monodisperse arrays of gold nanoparticles (AuNP). As the temperature is lowered, the current-voltage (I-V) characteristics become increasingly nonlinear and below 20 K conduction only occurs above a threshold voltage V(T). The current follows the scaling behavior I ∝ [(V − V(T))/V(T)]α for V > V(T) with α ∼ 2.5 signifying two-dimensional (2D) charge transport. The temperature dependence of the resistance shows thermally activated behavior with an activation energy of 18.2 meV corresponding to the sequential tunneling of charges through 6 nm monodispersed AuNP arrays grown on a peptide surface.