Outcome study of computer-aided surgical simulation in the treatment of patients with craniomaxillofacial deformities.
Academic Article
Overview
abstract
PURPOSE: The purpose of this study was to determine whether the surgical outcomes achieved with computer-aided surgical simulation (CASS) are better than those achieved with traditional methods. MATERIALS AND METHODS: Twelve consecutive patients with craniomaxillofacial (CMF) deformities were enrolled. According to the CASS clinical protocol, a 3-dimensional computer composite skull model for each patient was generated and reoriented to the neutral head posture. These models underwent 2 virtual surgeries: 1 was based on CASS (experimental group) and the other was based on traditional methods 1 year later (control group). Once the 2 virtual surgeries were completed, 2 experienced oral and maxillofacial surgeons at 2 different settings evaluated the 2 surgical outcomes. They were blinded to the planning method used on the virtual models and each other's evaluation results. The primary outcome was overall CMF skeletal harmony. The secondary outcomes were individual maxillary, mandibular, and chin harmonies. Statistical analyses were performed. RESULTS: Overall CMF skeletal harmony achieved with CASS was statistically significantly better than that achieved with traditional methods. In addition, the maxillary and mandibular surgical outcomes achieved with CASS were significantly better. Furthermore, although not included in the statistical model, the chin symmetry achieved by CASS tended to be better. A regression model was established between mandibular symmetry and overall CMF skeletal harmony. CONCLUSION: The surgical outcomes achieved with CASS are significantly better than those achieved with traditional planning methods. In addition, CASS enables the surgeon to better correct maxillary yaw deformity, better place proximal/distal segments, and better restore mandibular symmetry. The critical step in achieving better overall CMF skeletal harmony is to restore mandibular symmetry.