A radial self-calibrated (RASCAL) generalized autocalibrating partially parallel acquisition (GRAPPA) method using weight interpolation.
Academic Article
Overview
abstract
A generalized autocalibrating partially parallel acquisition (GRAPPA) method for radial k-space sampling is presented that calculates GRAPPA weights without synthesized or acquired calibration data. Instead, GRAPPA weights are fitted to the undersampled data as if they were the calibration data. Because the relative k-space shifts associated with these GRAPPA weights vary for a radial trajectory, new GRAPPA weights can be resampled for arbitrary shifts through interpolation, which are then used to generate missing projections between the acquired projections. The method is demonstrated in phantoms and in abdominal and brain imaging. Image quality is similar to radial GRAPPA using fully sampled calibration data, and improved relative to a previously described self-calibrated radial GRAPPA technique.