Decreased lymphangiogenesis and lymph node metastasis by mTOR inhibition in head and neck cancer. Academic Article uri icon

Overview

abstract

  • Despite our improved understanding of cancer, the 5-year survival rate for head and neck squamous cell carcinomas (HNSCC) patients remains relatively unchanged at 50% for the past three decades. HNSCCs often metastasize to locoregional lymph nodes, and lymph node involvement represents one of the most important prognostic factors of poor clinical outcome. Among the multiple dysregulated molecular mechanism in HNSCCs, emerging basic, preclinical, and clinical findings support the importance of the mTOR signaling route in HNSCC progression. Indeed, we observed here that the activation of mTOR is a widespread event in clinical specimens of HNSCCs invading locoregional lymph nodes. We developed an orthotopic model of HNSCC consisting of the implantation of HNSCC cells into the tongues of immunocompromised mice. These orthotopic tumors spontaneously metastasize to the cervical lymph nodes, where the presence of HNSCC cells can be revealed by histologic and immunohistochemical evaluation. Both primary and metastatic experimental HNSCC lesions exhibited elevated mTOR activity. The ability to monitor and quantitate lymph node invasion in this model system enabled us to explore whether the blockade of mTOR could impact HNSCC metastasis. We found that inhibition of mTOR with rapamycin and the rapalog RAD001 diminished lymphangiogenesis in the primary tumors and prevented the dissemination of HNSCC cancer cells to the cervical lymph nodes, thereby prolonging animal survival. These findings may provide a rationale for the future clinical evaluation of mTOR inhibitors, including rapamycin and its analogues, as part of a molecular-targeted metastasis preventive strategy for the treatment of patients with HNSCC.

publication date

  • October 5, 2011

Research

keywords

  • Carcinoma, Squamous Cell
  • Head and Neck Neoplasms
  • Lymphangiogenesis
  • TOR Serine-Threonine Kinases

Identity

PubMed Central ID

  • PMC3443559

Scopus Document Identifier

  • 81155126038

Digital Object Identifier (DOI)

  • 10.1158/0008-5472.CAN-10-3192

PubMed ID

  • 21975930

Additional Document Info

volume

  • 71

issue

  • 22