Preclinical study of treatment response in HCT-116 cells and xenografts with (1) H-decoupled (31) P MRS. Academic Article uri icon

Overview

abstract

  • The topoisomerase I inhibitor, irinotecan, and its active metabolite SN-38 have been shown to induce G(2) /M cell cycle arrest without significant cell death in human colon carcinoma cells (HCT-116). Subsequent treatment of these G(2) /M-arrested cells with the cyclin-dependent kinase inhibitor, flavopiridol, induced these cells to undergo apoptosis. The goal of this study was to develop a noninvasive metabolic biomarker for early tumor response and target inhibition of irinotecan followed by flavopiridol treatment in a longitudinal study. A total of eleven mice bearing HCT-116 xenografts were separated into two cohorts where one cohort was administered saline and the other treated with a sequential course of irinotecan followed by flavopiridol. Each mouse xenograft was longitudinally monitored with proton ((1) H)-decoupled phosphorus ((31) P) magnetic resonance spectroscopy (MRS) before and after treatment. A statistically significant decrease in phosphocholine (p = 0.0004) and inorganic phosphate (p = 0.0103) levels were observed in HCT-116 xenografts following treatment, which were evidenced within twenty-four hours of treatment completion. Also, a significant growth delay was found in treated xenografts. To discern the underlying mechanism for the treatment response of the xenografts, in vitro HCT-116 cell cultures were investigated with enzymatic assays, cell cycle analysis, and apoptotic assays. Flavopiridol had a direct effect on choline kinase as measured by a 67% reduction in the phosphorylation of choline to phosphocholine. Cells treated with SN-38 alone underwent 83 ± 5% G(2) /M cell cycle arrest compared to untreated cells. In cells, flavopiridol alone induced 5 ± 1% apoptosis while the sequential treatment (SN-38 then flavopiridol) resulted in 39 ± 10% apoptosis. In vivo (1) H-decoupled (31) P MRS indirectly measures choline kinase activity. The decrease in phosphocholine may be a potential indicator of early tumor response to the sequential treatment of irinotecan followed by flavopiridol in noninvasive and/or longitudinal studies.

publication date

  • March 24, 2011

Research

keywords

  • Colorectal Neoplasms
  • Magnetic Resonance Spectroscopy
  • Protons
  • Xenograft Model Antitumor Assays

Identity

PubMed Central ID

  • PMC3201722

Scopus Document Identifier

  • 80054068153

Digital Object Identifier (DOI)

  • 10.1002/nbm.1674

PubMed ID

  • 21994185

Additional Document Info

volume

  • 24

issue

  • 9