Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Review uri icon

Overview

abstract

  • Hsp90 is an ATP dependent molecular chaperone protein which integrates multiple oncogenic pathways. As such, Hsp90 inhibition is a promising anti-cancer strategy. Several inhibitors that act on Hsp90 by binding to its N-terminal ATP pocket have entered clinical evaluation. Robust pre-clinical data suggested anti-tumor activity in multiple cancer types. Clinically, encouraging results have been demonstrated in melanoma, acute myeloid leukemia, castrate refractory prostate cancer, non-small cell lung carcinoma and multiple myeloma. In breast cancer, proof-of-concept was demonstrated by first generation Hsp90 inhibitors in combination with trastuzumab mainly in human epidermal growth factor receptor 2 (HER2)+metastatic breast cancer. There are a multitude of second generation Hsp90 inhibitors currently under investigation. To date, however, there is no FDA approved Hsp90 inhibitor nor standardized assay to ascertain Hsp90 inhibition. This review summarizes the current status of both first and second generation Hsp90 inhibitors based on their chemical classification and stage of clinical development. It also discusses the pharmacodynamic assays currently implemented in clinic as well as other novel strategies aimed at enhancing the effectiveness of Hsp90 inhibitors. Ultimately, these efforts will aid in maximizing the full potential of this class of agents. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).

publication date

  • October 29, 2011

Research

keywords

  • Antineoplastic Agents
  • HSP90 Heat-Shock Proteins
  • Neoplasms

Identity

PubMed Central ID

  • PMC3288123

Scopus Document Identifier

  • 84857039457

Digital Object Identifier (DOI)

  • 10.1016/j.bbamcr.2011.10.008

PubMed ID

  • 22062686

Additional Document Info

volume

  • 1823

issue

  • 3