Molecular epidemiological analysis of Escherichia coli sequence type ST131 (O25:H4) and blaCTX-M-15 among extended-spectrum-β-lactamase-producing E. coli from the United States, 2000 to 2009.
Academic Article
Overview
abstract
Escherichia coli sequence type ST131 (from phylogenetic group B2), often carrying the extended-spectrum-β-lactamase (ESBL) gene bla(CTX-M-15), is an emerging globally disseminated pathogen that has received comparatively little attention in the United States. Accordingly, a convenience sample of 351 ESBL-producing E. coli isolates from 15 U.S. centers (collected in 2000 to 2009) underwent PCR-based phylotyping and detection of ST131 and bla(CTX-M-15). A total of 200 isolates, comprising 4 groups of 50 isolates each that were (i) bla(CTX-M-15) negative non-ST131, (ii) bla(CTX-M-15) positive non-ST131, (iii) bla(CTX-M-15) negative ST131, or (iv) bla(CTX-M-15) positive ST131, also underwent virulence genotyping, antimicrobial susceptibility testing, and pulsed-field gel electrophoresis (PFGE). Overall, 201 (57%) isolates exhibited bla(CTX-M-15), whereas 165 (47%) were ST131. ST131 accounted for 56% of bla(CTX-M-15)-positive- versus 35% of bla(CTX-M-15)-negative isolates (P < 0.001). Whereas ST131 accounted for 94% of the 175 total group B2 isolates, non-ST131 isolates were phylogenetically distributed by bla(CTX-M-15) status, with groups A (bla(CTX-M-15)-positive isolates) and D (bla(CTX-M-15)-negative isolates) predominating. Both bla(CTX-M-15) and ST131 occurred at all participating centers, were recovered from children and adults, increased significantly in prevalence post-2003, and were associated with molecularly inferred virulence. Compared with non-ST131 isolates, ST131 isolates had higher virulence scores, distinctive virulence profiles, and more-homogeneous PFGE profiles. bla(CTX-M-15) was associated with extensive antimicrobial resistance and ST131 with fluoroquinolone resistance. Thus, E. coli ST131 and bla(CTX-M-15) are emergent, widely distributed, and predominant among ESBL-positive E. coli strains in the United States, among children and adults alike. Enhanced virulence and antimicrobial resistance have likely promoted the epidemiological success of these emerging public health threats.