Total IgE as a serodiagnostic marker to aid murine fur mite detection.
Academic Article
Overview
abstract
Mites of 3 genera-Myobia, Myocoptes, and Radfordia -continue to plague laboratory mouse facilities, even with use of stringent biosecurity measures. Mites often spread before diagnosis, predominantly because of detection difficulty. Current detection methods have suboptimal sensitivity, are time-consuming, and are costly. A sensitive serodiagnostic technique would facilitate detection and ease workload. We evaluated whether total IgE increases could serve as a serodiagnostic marker to identify mite infestations. Variables affecting total IgE levels including infestation duration, sex, age, mite species, soiled-bedding exposure, and ivermectin treatment were investigated in Swiss Webster mice. Strain- and pinworm-associated effects were examined by using C57BL/6 mice and Swiss Webster mice dually infested with Syphacia obvelata and Aspiculuris tetraptera, respectively. Mite infestations led to significant increases in IgE levels within 2 to 4 wk. Total IgE threshold levels and corresponding sensitivity and specificity values were determined along the continuum of a receiver-operating characteristic curve. A threshold of 81 ng/mL was chosen for Swiss Webster mice; values above this point should trigger screening by a secondary, more specific method. Sex-associated differences were not significant. Age, strain, and infecting parasite caused variability in IgE responses. Mice exposed to soiled bedding showed a delayed yet significant increase in total IgE. Treatment with ivermectin reduced total IgE levels within 2 wk. Our data suggest that increases in total IgE in Swiss Webster and C57BL/6 mice warrant investigation, especially because mite infestations can rapidly elevate total IgE levels. We propose that using total IgE levels routinely in serologic panels will enhance biosecurity.