Imaging characteristics, tissue distribution, and spread of a novel oncolytic vaccinia virus carrying the human sodium iodide symporter. Academic Article uri icon

Overview

abstract

  • INTRODUCTION: Oncolytic viruses show promise for treating cancer. However, to assess therapy and potential toxicity, a noninvasive imaging modality is needed. This study aims to determine the in vivo biodistribution, and imaging and timing characteristics of a vaccinia virus, GLV-1h153, encoding the human sodium iodide symporter (hNIS. METHODS: GLV-1h153 was modified from GLV-1h68 to encode the hNIS gene. Timing of cellular uptake of radioiodide (131)I in human pancreatic carcinoma cells PANC-1 was assessed using radiouptake assays. Viral biodistribution was determined in nude mice bearing PANC-1 xenografts, and infection in tumors confirmed histologically and optically via Green Fluorescent Protein (GFP) and bioluminescence. Timing characteristics of enhanced radiouptake in xenografts were assessed via (124)I-positron emission tomography (PET). Detection of systemic administration of virus was investigated with both (124)I-PET and 99m-technecium gamma-scintigraphy. RESULTS: GLV-1h153 successfully facilitated time-dependent intracellular uptake of (131)I in PANC-1 cells with a maximum uptake at 24 hours postinfection (P<0.05). In vivo, biodistribution profiles revealed persistence of virus in tumors 5 weeks postinjection at 10(9) plaque-forming unit (PFU)/gm tissue, with the virus mainly cleared from all other major organs. Tumor infection by GLV-1h153 was confirmed via optical imaging and histology. GLV-1h153 facilitated imaging virus replication in tumors via PET even at 8 hours post radiotracer injection, with a mean %ID/gm of 3.82 ± 0.46 (P<0.05) 2 days after intratumoral administration of virus, confirmed via tissue radiouptake assays. One week post systemic administration, GLV-1h153-infected tumors were detected via (124)I-PET and 99m-technecium-scintigraphy. CONCLUSION: GLV-1h153 is a promising oncolytic agent against pancreatic cancer with a promising biosafety profile. GLV-1h153 facilitated time-dependent hNIS-specific radiouptake in pancreatic cancer cells, facilitating detection by PET with both intratumoral and systemic administration. Therefore, GLV-1h153 is a promising candidate for the noninvasive imaging of virotherapy and warrants further study into longterm monitoring of virotherapy and potential radiocombination therapies with this treatment and imaging modality.

publication date

  • August 17, 2012

Research

keywords

  • Molecular Imaging
  • Oncolytic Viruses
  • Symporters
  • Vaccinia virus
  • Virus Replication

Identity

PubMed Central ID

  • PMC3422353

Scopus Document Identifier

  • 84865077277

Digital Object Identifier (DOI)

  • 10.1371/journal.pone.0041647

PubMed ID

  • 22912675

Additional Document Info

volume

  • 7

issue

  • 8