Investigational drug MLN0128, a novel TORC1/2 inhibitor, demonstrates potent oral antitumor activity in human breast cancer xenograft models. Academic Article uri icon

Overview

abstract

  • Aberrant activation of the mammalian target of rapamycin (mTOR) signaling plays an important role in breast cancer progression and represents a potential therapeutic target for breast cancer. In this study, we report the impact of the investigational drug MLN0128, a potent and selective small molecule active-site TORC1/2 kinase inhibitor, on tumor growth and metastasis using human breast cancer xenograft models. We assessed in vitro antiproliferative activity of MLN0128 in a panel of breast cancer cell lines. We next evaluated the impact of MLN0128 on tumor growth, angiogenesis and metastasis using mammary fat pad xenograft models of a non-VEGF (ML20) and a VEGF-driven (MV165) MCF-7 sublines harboring PIK3CA mutations. MLN0128 potently inhibited cell proliferation in various breast cancer cell lines harboring PIK3CA (IC(50): 1.5-53 nM), PTEN (IC(50): 1-149 nM), KRAS, and/or BRAF mutations (IC(50): 13-162 nM), and in human endothelial cells (IC(50): 33-40 nM) in vitro. In vivo, MLN0128 decreased primary tumor growth significantly in both non-VEGF (ML20; p = 0.05) and VEGF-driven MCF-7 (MV165; p = 0.014) xenograft models. MLN0128 decreased the phosphorylation of Akt, S6, 4E-BP1, and NDRG1 in both models. In contrast, rapamycin increased Akt activity and failed to reduce the phosphorylation of 4E-BP1, PRAS40, and NDRG1. VEGF-induced lung metastasis in MV165 is inhibited by MLN0128 and rapamycin. In conclusion, MLN0128 inhibits TORC1/2-dependent signaling in preclinical models of breast cancer. MLN0128 appears to be superior in blocking mTORC1/2 signaling in contrast to rapamycin. Our findings support the clinical research of MLN0128 in patients with breast cancer and metastasis.

publication date

  • October 21, 2012

Research

keywords

  • Antineoplastic Agents
  • Benzoxazoles
  • Breast Neoplasms
  • Multiprotein Complexes
  • Protein Kinase Inhibitors
  • Proteins
  • Pyrimidines
  • TOR Serine-Threonine Kinases

Identity

Scopus Document Identifier

  • 84878759479

Digital Object Identifier (DOI)

  • 10.1007/s10549-012-2298-8

PubMed ID

  • 23085766

Additional Document Info

volume

  • 136

issue

  • 3