Circulating tumor cells from prostate cancer patients interact with E-selectin under physiologic blood flow. Academic Article uri icon

Overview

abstract

  • Hematogenous metastasis accounts for the majority of cancer-related deaths, yet the mechanism remains unclear. Circulating tumor cells (CTCs) in blood may employ different pathways to cross blood endothelial barrier and establish a metastatic niche. Several studies provide evidence that prostate cancer (PCa) cell tethering and rolling on microvascular endothelium via E-selectin/E-selectin ligand interactions under shear flow theoretically promote extravasation and contribute to the development of metastases. However, it is unknown if CTCs from PCa patients interact with E-selectin expressed on endothelium, initiating a route for tumor metastases. Here we report that CTCs derived from PCa patients showed interactions with E-selectin and E-selectin expressing endothelial cells. To examine E-selectin-mediated interactions of PCa cell lines and CTCs derived from metastatic PCa patients, we used fluorescently-labeled anti-prostate specific membrane antigen (PSMA) monoclonal antibody J591-488 which is internalized following cell-surface binding. We employed a microscale flow device consisting of E-selectin-coated microtubes and human umbilical vein endothelial cells (HUVECs) on parallel-plate flow chamber simulating vascular endothelium. We observed that J591-488 did not significantly alter the rolling behavior in PCa cells at shear stresses below 3 dyn/cm(2). CTCs obtained from 31 PCa patient samples showed that CTCs tether and stably interact with E-selectin and E-selectin expressing HUVECs at physiological shear stress. Interestingly, samples collected during disease progression demonstrated significantly more CTC/E-selectin interactions than samples during times of therapeutic response (p=0.016). Analysis of the expression of sialyl Lewis X (sLe(x)) in patient samples showed that a small subset comprising 1.9-18.8% of CTCs possess high sLe(x) expression. Furthermore, E-selectin-mediated interactions between prostate CTCs and HUVECs were diminished in the presence of anti-E-selectin neutralizing antibody. CTC-Endothelial interactions provide a novel insight into potential adhesive mechanisms of prostate CTCs as a means to initiate metastasis.

publication date

  • December 27, 2013

Research

keywords

  • E-Selectin
  • Human Umbilical Vein Endothelial Cells
  • Neoplasm Proteins
  • Neoplastic Cells, Circulating
  • Prostatic Neoplasms
  • Stress, Physiological

Identity

PubMed Central ID

  • PMC3874033

Scopus Document Identifier

  • 84893592857

Digital Object Identifier (DOI)

  • 10.1371/journal.pone.0085143

PubMed ID

  • 24386459

Additional Document Info

volume

  • 8

issue

  • 12